суббота, 29 ноября 2014 г.

Цитаты Алистера Кроули



Одной из саымх одиозных фигур в магии XX века был Алистер Кроули


Кроули чрезвычайно расширяет понятие магии, определяя ее как "Науку и Искусство вызывать Изменение, совершающееся в соответствии с Желанием". Отсюда следует, что «магией» можно назвать всю обычную деятельность западного человека, и Кроули не только не отрицает, но и всячески подчеркивает это. 
Каждый человек, воплощающий свои желания в действия, является магом; а следовательно, каждый, кто хочет действовать успешно, должен изучать законы магии. Это не так уж странно и экстравагантно, как может показаться на первый взгляд; напротив, по некотором размышлении нам, пожалуй, покажется странным, что мы не заметили этого раньше. Ведь всякое действие, не вызванное необходимостью, носит мистический характер, поскольку имеет нематериальную причину (желание) и материальное следствие (поступок).

***
Мы не имеем права с ходу решать, что поедание опилок якобы удовольствие неестественное. Организм определенного человека может быть так устроен, что опилки пойдут ему на пользу. И пока эта его странность не вредит и не мешает другим людям, нет причины, почему бы его не оставить в покое.
Но если в этом же человеке укоренилась вера, что поедание опилок необходимо для счастья человечества; если он объясняет почти все, что происходит, поеданием или непоеданием их; если он воображает, что большинство людей, которые ему встречаются, такие же поедатели опилок, и вдобавок, если он думает, что спасение мира зависит полностью от создания законов, чтобы заставить людей есть опилки, любят ли они это или нет, то будет справедливо сказать, что его психика неуравновешенна и, что он свихнулся на этой теме; и, далее, сама практика потребления опилок, какой бы невинной она не казалась, в этом частном случае - извращение.

***
Люди вечно делают вид,  что хотят подняться над  самими  собой,  но  на самом  деле они ужасно опасаются, как бы с ними ничего такого не случилось.

***
Первое и главное - знать, чего хочешь. Укрепите вашу любовь на этой мачте, и тогда у вас будет настоящий маяк, который не даст кораблю сбиться с пути в гавань.
***
И мудрейший из людей не знает, как сделать счастливым страдальца, который, при том, может быть молод, хорош собой, богат, здоров и любим. Но самый последний бродяга из бродяг, дрожащий от холода и голода в лохмотьях, больной, бездомный, старый, жалкий, глупый, завистливый, может испытать мгновенный восторг и упиться им. Счастье столь же парадоксально как жизнь и столь же таинственно как смерть

***
Люди пустые любят разглагольствовать о знаниях, которые сами по себе открыты всем; однако в них есть тайна, охраняемая лучше всех других тайн на земле, и охраняет ее тот простой факт, что для освоения даже маленькой части этих знаний человеку, призови он хоть весь свет на помощь, придется потратить целую жизнь. Тайну нашей Магики мы охраняем не менее, но и не более строго, чем иные наши коллеги — тайну своей физики; лишь профанам всегда «не терпится».... требуют, чтобы им сначала доказали, что заклинания действуют. Именно те и требуют, кто никогда не и знал, как ими пользоваться. Я, например, могу читать Гомера в подлиннике, но доказать это сумею лишь тому, кто тоже знает древнегреческий язык. Если он не знает его, я должен буду сначала научить его древнегреческому; однако и тогда ему понадобится некто третий, тоже знающий этот язык, чтобы подтвердить правильность его познаний, и так далее.
«Лунное дитя»
***

***
Битва со своими сомнениями — вещь весьма серьезная. Ты еще успеешь удивиться тому, как хитро и проницательно твое подсознание, как ладно скроена его «неопровержимая» логика, как велика его сила — о, оно сумеет заставить тебя признать день ночью, если ты ему это позволишь.
«Лунное дитя»

***
Каждый человек толкует и переводит все на язык собственного опыта. И если вы сказали нечто, что не абсолютно идентично точке зрения, существующей в мозгу другого человека, он либо поймет вас неправильно, либо не поймет вовсе.

***
Религия в жизни, - либо развлечение и снотворное, либо притворство и мошенничество.
***
Законы Магики тесно связаны с другими физическими законами. Всего сто лет назад люди не знали о добром десятке важнейших свойств материи — теплопроводности, электрическом сопротивлении, непрозрачности некоторых материалов для рентгеновских лучей, спектроскопии и других, которые можно даже назвать оккультными. Магика принципиально имеет дело со вполне реальными, хотя и не известными обыкновенному человеку силами; сами силы от этого не становятся менее реальными или менее материальными (хотя эти слова, конечно, не точны в том смысле, что любая вещь имеет и нематериальные стороны), чем, например, радиоактивность, вес и плотность. Трудность их определения и измерениям указывает прежде всего на неуловимо тонкий характер их связей с жизнью. Живая протоплазма тождественна мертвой во всем, кроме самого факта жизни.

***
Каждый человек одинок навсегда. Однако, если вы окружены более-менее приличной компанией, вы можете забыть про этот ужасающий факт на достаточно долгий период, чтобы дать вашему мозгу оправиться от острых симптомов заболевания - то есть от размышлений.

***
Но зачем вспоминать болезненное прошлое? Разумеется сильными не становятся за одну минуту. Возьмем к примеру орла. Кто он такой, пока пребывает в яйце? Ничто, всего лишь яйцо с возможностями. И вы не ждете, что вылупившись из яйца он в первый же день слетает на Нептун и обратно. Ведь не ждете!
***
Подавляющее большинство людей уверены, что даже самый обыкновенный русский человек рассматривает половой акт как серьезный научный эксперимент, предельно серьезно изучая в малейших деталях возможность баланса и личной совместимости, никогда не проявляя энтузиазма, пока того не предпишет сценическая ремарка. Этот принцип переносится и в религию. Русские люди крестятся только тогда, когда испытывают желание перекреститься, падая ниц по совершенно непонятному для постороннего взгляда поводу. Создается впечатление, что каждый выполняет свой собственный обряд, не имеющий ничего общего с действиями соседа. Задача каждого — ввести себя в состояние религиозного экстаза: только достигнув его, ты вправе сказать, что был в церкви.
Для русских страдание — это то, что можно наблюдать, но не чувствовать. Они рассматривают тяжелые испытания, выпавшие на их долю, как некий эксперимент Бога над человеком и принимают их, полагая при этом, что высшая цель оправдывает любые средства. Отсюда тоскливо-ожидающее выражение их по-собачьи преданных глаз и красота бледных щек. Отсюда особый склад ума, способного найти радость в печали и печаль в радости. Отсюда способность к долгому страданию, соседствующая с неистовой свирепостью, нежность, граничащая с жестокостью. Великий Разум находит свое воплощение в стремлении к крайностям. Это — философия китайского Даосизма на практике, и в то же время — антитезис идее возможности достигнуть всего, не делая ничего. 
"Сердце Святой Руси"

Очень интересный материал о Кроуле читайте в статье Анны Симбилайн "Алистер Кроули и знамения нашего времени"






четверг, 13 ноября 2014 г.

Вот как устроена стая волков

following-the-pack
Что мы знаем о волках? Зачастую наши знания оказываются устоявшимися заблуждениями.
Вот что пишут в интернете: Впереди идут трое самых слабых и больных. Если засада — то убьют впереди идущих. Еще эти слабые волки должны снег протоптать и сохранить силы для последующих. За ними пятерка матерых волков — мобильный отряд авангарда. Посередине — 11 волчиц. За ними тоже пятерка матерых волков — арьергард
А позади всех идет чуть в отдалении сам вожак. Ему необходимо видеть всю стаю целиком и контролировать, регулировать, координировать и давать команды.
Фотография как бы иллюстрируем всю эту схему. На самом ли деле все так и происходит ?
Давайте выясним это наверняка…
Казалось бы все верно. Вот и  Василий Иванович согласен :
На фото , кстати, канадские волки, которые охотятся на бизонов. Вообще зачастую к этой информации встречаются комментарии такого плана:
Они на пулемет что ли должны напороться? Больных вперед выставлять? :-)))) Да и не потянут тропежку больные. Впереди самым здоровым трудно, а не то что больным.
Согласны ?
А вот источник этой фотографии. Читаем что там написано:
Огромная стая, состоящая из 25 волков, охотящаяся на бизонов в Арктическом круге в северной Канаде. В середине зимы в Национальном Парке (заповеднике) Вуд Буффало температура доходит то -40C. Волчья стая, ведомая вожаком альфа-волчицей, идет через глубокий снег в колонне по-одному, чтобы сохранить энергию. Размер стаи свидетельствует о богатстве их охотничьей территории во время зимы, когда количество бизонов ограничено из-за скудного питания и глубокого снега. Стаи волков в этом Национальном Парке — это единственные волки в мире, которые специализируются на охоте на бизонов, которые в десять раз больше их собственного размера. Они стали самыми большими и самыми сильными волками на земле.
Вот интересное видео, и еще :


Характер отношений в стае альтруистичен. То есть каждое животное подчиняет свои личные интересы интересам всего «коллектива». При иных взаимоотношениях стая как единый организм существовать не может. Ранг животного зависит от уровня развития психики, а не только от физических данных.
Ведь, как известно, выживает не столько самый сильный, сколько самый умный. А вожаку приходится организовывать охоту (у волков групповой загонный тип охоты, требующий хорошей организации), принимать решения о разделе добычи. Поэтому в стае царит мир и покой. Младшие слушаются старших и чувствуют себя абсолютно защищенными, а старшие несут бремя ответственности за всех.
Волчья стая имеет семь рангов, это прекрасно организованное общество, где каждый понимает свои права и обязанности. Управление происходит без силовых приемов, все четко организовано, роли распределены, никто никого не удерживает, но почему-то все выбирают совместное существование. Выделение социальных рангов в стае слабо связано с полом и старшинством по возрасту. Эти факторы, как и физическая сила, лишь обеспечивают выполнение полезных функций, не более того.
Убив оленя, волки прекращают охоту, пока не кончится все мясо и голод не заставит их снова приняться за дело.
Вожак – высший социальный ранг. Предполагает ответственность за всю стаю. Вожак решает вопросы местообитания, охоты, защиты, всех организовывает, устанавливает ранги в стае.
Своим преимущественным правом на пищу вожак пользуется по собственному усмотрению. Например, отдает свою долю щенкам, если еды недостаточно. В его задачи входит забота обо всех, а щенки – будущее стаи.
Если голодающий вожак окажется не в состоянии руководить стаей, в опасности окажутся все, поэтому его преимущественное право на пищу не оспаривается. Сам бы отдал последний кусок, только бы чувствовать себя защищенным!
Интересно, что вожак лишен права на защиту, ведь в моменты опасности только он принимает ответственные решения, остальные члены стаи выполняют его распоряжения.
Воин – этот ранг могут занимать особи любого пола. Если это волчица, то она не должна быть занята воспитанием потомства.


Воины – это команда вожака, обеспечивающая безопасность и пропитание стаи. В случае нападения на защиту встают только воины, у остальных членов стаи – другие задачи.
Старший воин – организовывает охоту и охрану, претендент на роль вожака в случае его гибели или невозможности руководить стаей.
Мать – взрослая волчица, которая имеет опыт воспитания волчат. Обязанности матери она может выполнять как по отношению к своим детенышам, так и по отношению к детям менее опытных матерей. Рождение «детей» не переводит автоматически волчицу в ранг матери. Как и для любого другого ранга, здесь требуется определенное психофизическое развитие, способность принимать решения, необходимые для жизни.
В задачи матери входит выращивание и воспитание потомства. В случае нападения на стаю именно матери уводят всех слабых в безопасное место, в то время как воины держат оборону.
Старшая мать – при необходимости может занять ранг вожака. Со старшим воином никогда не конкурирует. Освободившийся ранг занимает наиболее достойный, способный управлять стаей. Никаких поединков для выявления более сильного не происходит.
В период вскармливания и выращивания детей все матери стаи находятся под особой защитой и опекой.
Размножение – у волков и эта сторона жизни организована очень красиво. Один раз в год стая разбивается на семьи, чтобы произвести на свет и вырастить потомство. К размножению допущены не все. Основное условие – понимать свое место и роль в большой семье-стае. Поэтому те, кто не имеет пары, живет в маленькой волчьей семье третьим, помогая охотиться и воспитывать волчат.
Пары волков – на всю жизнь. Если один из партнеров умирает, новая пара не создается…
Опекун – несет ответственность за воспитание волчат. Выделяется два подранга: пестун и дядя.
Пестун – молодые волчицы или волки, не претендующие на ранг воина, подросший молодняк предыдущего помета. Они находятся в подчинении матерей и выполняют их распоряжения, получая навыки воспитания и обучения подрастающих волчат. Это их первые обязанности в стае.
Дядя – это взрослый кобель, не имеющий собственной семьи и помогающий выращивать волчат.
Сигнальщик – оповещение стаи об опасностях. Решение принимают более ответственные члены стаи.
Щенок – это шестой ранг, никакой ответственности, кроме послушания старших, но дает преимущественное право на питание и защиту.
Инвалид – не увечная, а просто старая особь, имеет право на питание и защиту. Волки заботятся о своих стариках.

Источник




среда, 12 ноября 2014 г.

Как доказали теорему Ферма



В прошлом двадцатом веке случилось событие, равного по масштабу которого в математике не было за всю ее историю. 19-го сентября 1994 года была доказана  теорема, сформулированная Пьером де Ферма (1601-1665) более 350-ти лет назад в 1637 году. 


Итак, Великая теорема Ферма (нередко называемая послед­ней теоремой Ферма), сформулированная в 1637 году блестя­щим французским математиком Пьером Ферма , очень проста по своей сути и понятна любому человеку со средним образова­нием. Она гласит, что формула  а в степени n + b  в степени n = c в степени n не имеет натуральных (то есть не дробных) решений для n > 2. Вроде все просто и понятно, но лучшие ученые-математики и простые любители бились над поиском решения более трех с половиной веков.

Почему она так знаменита? Сейчас узнаем ...



Мало ли доказанных, недоказанных и пока не доказанных теорем? Тут все дело в том, что Великая теорема Ферма являет собой самый большой контраст между простотой формулировки и сложностью доказательства. Великая теорема Ферма – задача невероятно трудная, и тем не менее ее формулировку может понять каждый с 5-ю классами средней школы, а вот доказательство – даже далеко не всякий математик-профессионал. Ни в физике, ни в химии, ни в биологии, ни в той же математике нет ни одной проблемы, которая формулировалась бы так просто, но оставалась нерешенной так долго. 2. В чем же она состоит?

Начнем с пифагоровых штанов Формулировка действительно проста – на первый взгляд. Как известно нам с детства, «пифагоровы штаны на все стороны равны». Проблема выглядит столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно, – теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.

В V веке до н.э. Пифагор основал пифагорейское братство. Пифагорейцы, помимо прочего, изучали целочисленные тройки, удовлетворяющие равенству x²+y²=z². Они доказали, что пифагоровых троек бесконечно много, и получили общие формулы для их нахождения. Наверное, они пробовали искать тройки и более высоких степеней. Убедившись, что это не получается, пифагорейцы оставили бесполезные попытки. Члены братства были больше философами и эстетами, чем математиками.


То есть легко подобрать множество чисел, которые прекрасно удовлетворяют равенству x²+y²=z²

Начиная с 3, 4, 5 – действительно, младшекласснику понятно, что 9+16=25.

Или 5, 12, 13: 25 + 144 = 169. Замечательно.

Ну и так далее. А если взять похожее уравнение x³+y³=z³ ? Может, тоже есть такие числа?




И так далее (рис.1).

Так вот, оказывается, что их НЕТ. Вот тут начинается подвох. Простота – кажущаяся, потому что трудно доказать не наличие чего-то, а наоборот, отсутствие. Когда надо доказать, что решение есть, можно и нужно просто привести это решение.

Доказать отсутствие сложнее: например, некто говорит: такое-то уравнение не имеет решений. Посадить его в лужу? легко: бац – а вот оно, решение! (приведите решение). И все, оппонент сражен. А как доказать отсутствие?

Сказать: «Я не нашел таких решений»? А может, ты плохо искал? А вдруг они есть, только очень большие, ну очень, такие, что даже у сверхмощного компьютера пока не хватает силенок? Вот это-то и сложно.

В наглядном виде это можно показать так: если взять два квадратика подходящих размеров и разобрать на единичные квадратики, то из этой кучки единичных квадратиков получается третий квадратик (рис. 2):

А проделаем то же с третьим измерением (рис. 3) – не получается. Не хватает кубиков, или остаются лишние:




А вот математик XVII века француз Пьер де Ферма с увлечением исследовал общее уравнение xn+yn=zn. И, наконец, сделал вывод: при n>2 целочисленных решений не существует. Доказательство Ферма безвозвратно утеряно. Рукописи горят! Осталось лишь его замечание в «Арифметике» Диофанта: «Я нашел поистине удивительное доказательство этого предложения, но поля здесь слишком узки для того, чтобы вместить его».

Вообще-то, теорема без доказательства называется гипотезой. Но за Ферма закрепилась слава, что он никогда не ошибается. Даже если он не оставлял доказательства какого-нибудь утверждения, впоследствии оно подтверждалось. К тому же, Ферма доказал свой тезис для n=4. Так гипотеза французского математика вошла в историю как Великая теорема Ферма.

После Ферма над поиском доказательства работали такие ве­ликие умы, как Леонард Эйлер (в 1770 году им было предложено решение для n = 3),

Адриен Лежандр и Иоганн Дирихле (эти ученые в 1825 году совместно нашли доказательство для n = 5), Габриель Ламе (нашедший доказательство для n = 7) и многие другие. К середине 80-х годов прошлого века стало понятно, что ученый мир находится на пути к окончательному решению Великой теоремы Ферма, однако только в 1993 году математики увидели и поверили, что трехвековая эпопея по поиску доказа­тельства последней теоремы Ферма практически закончилась.

Легко показывается, что теорему Ферма достаточно доказать только для простых n: 3, 5, 7, 11, 13, 17, … При составных n доказательство остаётся в силе. Но и простых чисел бесконечно много…

В 1825 году, применив метод Софи Жермен, женщины-математика, Дирихле и Лежандр независимо друг от друга доказали теорему для n=5. В 1839 году тем же методом француз Габриель Ламе показал истинность теоремы для n=7. Постепенно теорему доказали почти для всех n, меньших ста.


Наконец, немецкий математик Эрнст Куммер в блестящем исследовании показал, что методами математики XIX века теорему в общем виде доказать нельзя. Премия Французской Академии Наук, учреждённая в 1847 году за доказательство теоремы Ферма, осталась невручённой.

В 1907 году богатый немецкий промышленник Пауль Вольфскель из-за неразделённой любви решил свести счёты с жизнью. Как истинный немец он назначил дату и время самоубийства: ровно в полночь. В последний день он составил завещание и написал письма друзьям и родственникам. Дела закончились раньше полночи. Надо сказать, что Пауль интересовался математикой. От нечего делать он пошёл в библиотеку и принялся читать знаменитую статью Куммера. Неожиданно ему показалось, что Куммер в ходе рассуждений совершил ошибку. Вольфскель стал с карандашом в руках разбирать это место статьи. Полночь миновала, наступило утро. Пробел в доказательстве был восполнен. Да и сам повод для самоубийства теперь выглядел совершенно нелепым. Пауль разорвал прощальные письма и переписал завещание.

Вскоре он умер естественной смертью. Наследники были изрядно удивлены: 100 000 марок (более 1 000 000 нынешних фунтов стерлингов) передавались на счёт Королевского научного общества Гёттингена, которое в том же году объявило о проведении конкурса на соискание премии Вольфскеля. 100 000 марок полагались доказавшему теорему Ферма. За опровержение теоремы не полагалось ни пфеннига…


Большинство профессиональных математиков считали поиск доказательства Великой теоремы Ферма безнадёжным делом и решительно отказывались тратить время на такое бесполезное занятие. Зато любители порезвились на славу. Через несколько недель после объявления на Гёттингенский университет обрушилась лавина «доказательств». Профессор Э. М. Ландау, в обязанность которого входил разбор присланных доказательств, раздал своим студентам карточки:


Уважаемый(ая) . . . . . . . .

Благодарю Вас за присланную Вами рукопись с доказательством Великой теоремы Ферма. Первая ошибка находится на стр. ... в строке ... . Из-за неё всё доказательство утрачивает силу.
Профессор Э. М. Ландау









В 1963 году Пауль Коэн, опираясь на выводы Гёделя, доказал неразрешимость одной из двадцати трех проблем Гильберта — гипотезы континуума. А что, если Великая теорема Ферма тоже неразрешима?! Но истинных фанатиков Великой теоремы это ничуть не разочаровало. Появление компьютеров неожиданно дало математикам новый метод доказательства. После Второй мировой войны группы программистов и математиков доказали Великую теорему Ферма при всех значениях n до 500, затем до 1 000, а позже до 10 000.

В 80-е годы Сэмюэль Вагстафф поднял предел до 25 000, а в 90-ых математики заявили, что Великая теорема Ферма верна при всех значениях n до 4 миллионов. Но если от бесконечности отнять даже триллион триллионов, она не станет меньше. Математиков не убеждает статистика. Доказать Великую теорему значило доказать её для ВСЕХ n, уходящих в бесконечность.



В 1954 году два молодых японских друга-математика занялись исследованием модулярных форм. Эти формы порождают ряды чисел, каждая - свой ряд. Случайно Танияма сравнил эти ряды с рядами, порождаемыми эллиптическими уравнениями. Они совпадали! Но модулярные формы – геометрические объекты, а эллиптические уравнения – алгебраические. Между столь разными объектами никогда не находили связи.

Тем не менее, друзья после тщательной проверки выдвинули гипотезу: у каждого эллиптического уравнения существует двойник – модулярная форма, и наоборот. Именно эта гипотеза стала фундаментом целого направления в математике, но до тех пор, пока гипотеза Таниямы–Симуры не была доказана, всё здание могло рухнуть в любой момент.

В 1984 году Герхард Фрей показал, что решение уравнения Ферма, если оно существует, можно включить в некоторое эллиптическое уравнение. Двумя годами позже профессор Кен Рибет доказал, что это гипотетическое уравнение не может иметь двойника в модулярном мире. Отныне Великая теорема Ферма была нерасторжимо связана с гипотезой Таниямы–Симуры. Доказав, что любая эллиптическая кривая модулярна, мы делаем вывод, что эллиптического уравнения с решением уравнения Ферма не существует, и Великая теорема Ферма была бы тотчас же доказана. Но в течение тридцати лет доказать гипотезу Таниямы–Симуры не удавалось, и надежд на успех оставалось всё меньше.

В 1963 году, когда ему было всего десять лет, Эндрю Уайлс уже был очарован математикой. Когда он узнал о Великой теореме, то понял, что не сможет отступиться от неё. Школьником, студентом, аспирантом он готовил себя к этой задаче.

Узнав о выводах Кена Рибета, Уайлс с головой ушёл в доказательство гипотезы Таниямы–Симуры. Он решил работать в полной изоляции и секретности. «Я понимал, что всё, что имеет какое-то отношение к Великой теореме Ферма, вызывает слишком большой интерес… Слишком много зрителей заведомо мешают достижению цели». Семь лет упорной работы принесли плоды, Уайлс наконец завершил доказательство гипотезы Таниямы–Симуры.

В 1993 году английский математик Эндрю Уайлс представил миру свое доказательство Великой теоремы Ферма (Уайльс прочитал свой сенсационный доклад на конференции в Институте сэра Исаака Ньютона в Кембридже.) , работа над которым продолжалась более семи лет.






Пока в печати продолжалась шумиха, началась серьёзная работа по проверке доказательства. Каждый фрагмент доказательства должен быть тщательно изучен прежде, чем доказательство может быть признано строгим и точным. Уайлс провёл беспокойное лето в ожидании отзывов рецензентов, надеясь, что ему удастся получить их одобрение. В конце августа эксперты нашли недостаточно обоснованное суждение.

Оказалось, что данное решение содержит грубую ошибку, хотя в целом и верно. Уайлс не сдался, призвал на помощь известного специалиста в теории чисел Ричарда Тейлора, и уже в 1994 году они опубликовали исправлен­ное и дополненное доказательство теоремы. Самое удивительное, что эта работа заняла целых 130 (!) полос в математическом журнале «Annals of Mathematics». Но и на этом история не закончилась — последняя точка была поставлена только в следующем, 1995 году, когда в свет вышел окончательный и «идеальный», с математи­ческой точки зрения, вариант доказательства.

«…через полминуты после начала праздничного обеда по случаю её дня рождения, я подарил Наде рукопись полного доказательства» (Эндрю Уальс). Я ещё не говорил, что математики странные люди?





На этот раз никаких сомнений в доказательстве не было. Две статьи были подвергнуты самому тщательному анализу и в мае 1995 года были опубликованы в журнале «Annals of Mathematics».

С того момента прошло немало времени, однако в обществе до сих пор бытует мнение о неразрешимости Великой теоремы Фер­ма. Но даже те, кто знает о найденном доказательстве, продолжают работу в этом направлении — мало кого устраивает, что Великая теорема требует решения в 130 страниц!

Поэтому сейчас силы очень многих математиков (в основном это любители, а не профессио­нальные ученые) брошены на поиски простого и лаконичного до­казательства, однако этот путь, скорее всего, не приведет никуда ...

Подробнее о содержании доказательства  Эндрю Уайльса 



[источники]






суббота, 1 ноября 2014 г.

Теорема Ферма: феномен доказательств Уайлса

В прошлом двадцатом веке случилось событие, равного по масштабу которого в математике не было за всю ее историю. 19-го сентября 1994 года была доказана  теорема, сформулированная Пьером де Ферма (1601-1665) более 350-ти лет назад в 1637 году. Она  известна также как «последняя теорема Ферма» или как «большая теорема Ферма», поскольку есть еще так называемая "малая теорема Ферма". Ее доказал 41-летний, до этого момента в математическом сообществе ничем особо непримечательный, и по математическим меркам  уже немолодой, профессор Принстонского университета Эндрю Уайлс.

Удивительно, что про это событие толком не знают не только наши обычные российские обыватели, но и многие интересующиеся наукой люди, включая даже немалое число ученых в России, так или иначе использующих математику.  Это показывают не прекращающиеся «сенсационные» сообщения об «элементарных доказательствах»  теоремы Ферма в российских популярных газетах и по телевидению. Очередные доказательства освещались с такой информационной силой, как будто не существовало прошедшее самую авторитетную экспертизу и получившее широчайшую известность во всем мире доказательство  Уайлса. Реакция российского математического сообщества на эти первополосные новости в ситуации давно полученного строгого доказательства оказалась поразительно вялой. Наша цель состоит в том, чтобы дать набросок захватывающей и драматичной истории доказательства  Уайлса в контексте феерической истории самой великой теоремы Ферма и немного поговорить о самом ее доказательстве. Здесь нам прежде всего интересен вопрос о возможности доступного изложения доказательства Уайлса, про которое, конечно, большинство математиков в мире знает, но говорить про понимание этого доказательства могут лишь очень и очень немногие из них.
Итак, вспомним знаменитую теорему  Ферма. Большинство из нас так или иначе слышали о ней еще со школьной поры. Эта теорема связана с весьма знаменательным уравнением. Это, пожалуй, самое простое осмысленное уравнение, какое только можно написать, используя три неизвестных X,Y,Z и еще один строго положительный целочисленный параметр «n». Вот оно:
Xn + Yn = Zn
Великая теорема Ферма утверждает, что при значениях параметра «n» (степени уравнения), превышающих двойку, целочисленных решений (X,Y,Z) данного уравнения не существует (кроме, конечно, решения, когда все эти переменные равны нулю одновременно).
Притягательная сила этой теоремы Ферма для широкой публики очевидна: нет другого математического утверждения, обладающего такой простотой формулировки, кажущейся доступностью доказательства, а также привлекательностью его «статусности»  в глазах общества.
До Уайлса дополнительным стимулом для ферматистов (так назвали людей, маниакально атаковавших проблему Ферма) являлся учрежденный почти сто лет назад приз немца Вольфскеля за доказательство, правда небольшой по сравнению с Нобелевской премией - он успел обесцениться во время первой мировой войны.
Кроме того,  всегда привлекала вероятная элементарность доказательства, так как сам Ферма «ее доказал», написав на полях перевода «Арифметики» Диофанта: «Я нашел этому поистине чудесное доказательство, но поля здесь слишком узки, чтобы вместить его».
Вот почему здесь уместно привести оценку актуальности популяризации доказательства Уайлса проблемы Ферма, принадлежащую известному американскому математику Рему Мерти (R. Murty) (цитируем по выходящему скоро переводу книги Ю. Манина и А. Панчишкина «Введение в современную теорию чисел»):
«Большая теорема Ферма занимает особое место в истории цивилизации. Своей внешней простотой она всегда притягивала к себе как любителей, так и профессионалов… Все выглядит так, как если бы было задумано неким высшим разумом, который в течение веков развивал различные направления мысли лишь затем, чтобы потом воссоединить их в один захватывающий сплав для решения Большой теоремы Ферма. Ни один человек не может претендовать на то, чтобы быть экспертом во всех идеях, использованных в этом «чудесном» доказательстве. В эпоху всеобщей специализации, когда каждый из нас знает «все больше и больше о все меньшем и меньшем», совершенно необходимо иметь обзор этого шедевра…»   
Начнем с краткого исторического экскурса, в основном навеянного увлекательной книгой Саймона Сингха «Великая теорема Ферма». Вокруг манящей своей кажущейся простотой коварной теоремы всегда кипели нешуточные страсти. История ее доказательства – сплошные драмы, мистика и даже непосредственные жертвы. Пожалуй, самая знаковая жертва – Ютака Танияма (1927-1958).  Именно этот молодой талантливый японский математик, отличавшийся в жизни большой экстравагантностью, создал в 1955 году основу для атаки Уайлса. На основе его идей Горо Шимура и Андре Вейль несколькими годами позже (60-67 годы)  окончательно сформулировали знаменитую гипотезу, доказав значительную часть которой, Уайлс получил  теорему Ферма как следствие.  Мистика истории смерти нетривиального Ютаки связана с его бурным темпераментом: он повесился в возрасте тридцати одного года на почве несчастной любви.
Вся длинная история загадочной теоремы  сопровождалась постоянными объявлениями о ее доказательстве, начиная с самого Ферма.  Постоянно находящиеся ошибки в нескончаемом потоке доказательств постигали не только математиков-любителей, но и математиков-профессионалов. Это  привело к тому, что  термин «ферматист», применяемый к доказывающим теорему Ферма, стал нарицательным. Постоянно сохраняющаяся интрига с ее доказательством приводила иной раз к забавным казусам.  Так, когда в первом варианте уже широко разрекламированного доказательства Уайлса обнаружился пробел, на одной из станций нью-йоркского метро появилась ехидная надпись: «я нашел поистине чудесное доказательство Великой теоремы Ферма, но пришел мой поезд и я не успеваю его записать».
Эндрю Уайлс (Andrew Wiles), родился в Англии в 1953 году, учился на математическом факультете в Кембридже; в аспирантуре был у профессора Джона Коутса. Под его руководством Эндрю постигал теорию японского математика Ивасавы, находящуюся на границе классической теории чисел и современной алгебраической геометрии. Такой сплав с виду далеких друг от друга математических дисциплин получил название арифметической алгебраической геометрии. Эндрю бросил вызов проблеме Ферма, опираясь именно на эту сложную даже для многих профессиональных математиков синтетическую теорию,.
После окончания аспирантуры Уайлс получил позицию в Принстонском университете, где работает и сейчас. Он женат и имеет троих дочерей, двое из которых родились «в семилетнем процессе первого варианта доказательства».  В эти годы только Нада, жена Эндрю, знала о том, что он штурмует в одиночку самую неприступную и самую знаменитую вершину математики. Именно им, Наде, Клэр, Кэйт  и Оливии посвящена знаменитая финальная статья Уайлса «Модулярные эллиптические кривые и Последняя теорема Ферма»  в центральном математическом журнале «Annals of Mathematics», где публикуются наиболее важные математические работы.
Сами же события вокруг доказательства разворачивались довольно драматично. Этот  захватывающий сценарий можно было бы назвать «ферматист –  математик-профессионал».
Действительно, Эндрю мечтал доказать теорему Ферма уже с юношеских лет. Но ему, в отличие от подавляющего большинства ферматистов, было ясно, что для этого нужно осваивать целые пласты самой сложной математики. Двигаясь к своей цели, Эндрю заканчивает математический факультет знаменитого Кембриджского университета и начинает специализироваться в современной теории чисел, находящейся на стыке с алгебраической геометрией.
Идея штурма сияющей вершины достаточно проста и фундаментальна - .максимально хорошая аммуниция и тщательная разработка маршрута.
В качестве мощного инструмента достижения цели выбирается развиваемая самим же Уайлсом уже знакомая ему теория Ивасавы, имеющая глубокие исторические корни. Эта теория обобщала теорию Куммера  – исторически первую серъезную математическую теорию по штурму проблемы Ферма, появившуюся еще в 19-м веке. В свою очередь, корни теории Куммера лежат в знаменитой теории легендарного и гениального романтика-революционера Эвариста Галуа, погибшего в возрасте двадцати одного года  на дуэли в защиту чести девушки (обратите внимание, вспомнив историю с Таниямой, на роковую роль прекрасных дам в истории математики).
Уайлс полностью погружается в доказательство, прекращая даже участие в научных конференциях.  И в результате семилетнего отшельничества от математического сообщества в Принстоне, в мае 1993 года Эндрю ставит .точку в своем тексте - дело сделано.
Именно в это время подворачивается прекрасный повод оповестить научный мир о своем открытии –  уже в июне должна была состояться конференция в родном Кембридже именно по нужной тематике.  Три лекции в Кембриджском институте Исаака Ньютона будоражат не  только математический мир, но и широкую общественность. В конце третьей лекции, 23-го июня 1993-го года, Уайлс объявляет о доказательстве великой теоремы Ферма. Доказательство насыщено целым букетом новых идей, таких как новый подход к гипотезе Таниямы-Шимуры-Вейля, далеко продвинутая теория Ивасавы, новая «теория контроля деформаций» представлений Галуа. Математическое сообщество с огромным нетерпением ждет проверки текста доказательства экспертами по арифметической алгебраической геометрии.
Вот здесь-то и наступает тот самый драматический поворот. Сам Уайлс в процессе общения с рецензентами обнаруживает у себя пробел в доказательстве. Трещину дал изобретенный им же самим механизм «контроля деформаций» - несущая конструкция доказательства.
Пробел обнаруживается пару месяцев спустя в результате «построчечного» объяснения Уайлсом своего доказательства коллеге по кафедре в Принстоне Нику Кацу. Ник Кац, находясь уже давно в дружеских отношениях с Эндрю, рекомендует ему сотрудничество с молодым перспективным английским математиком Ричардом Тейлором.
Проходит еще один год напряженной работы,  связанный с изучением дополнительного орудия атаки на неподдающуюся проблему - так называемых эйлеровских систем, независимо открытых в 80-е годы нашим соотечественником Виктором Колывагиным (уже давно работающим в университете Нью-Йорка) и Тэйном.
И вот новое испытание. Не доведенный до конца, но все же очень впечатляющий результат работы Уайлса, докладывается им международном конгрессе математиков в Цюрихе в конце августа 1994 года. Уайлс борется изо всех сил. Буквально перед докладом, по словам очевидцев,  он еще что-то лихорадочно пишет, пытаясь максимальной улучшить ситуацию с «провисшим» доказательством.
После этого интригующего аудиторию крупнейших математиков мира доклада Уайлса математическое сообщество «радостно выдыхает» и сочувственно аплодирует: ничего, парень, с кем ни бывает,  но ведь зато продвинул науку,  показав, что и в решении такой неприступной гипотезы можно успешно продвигаться, чего ранее никто даже не помышлял делать. Очередной ферматист Эндрю Уайлс не смог отнять сокровенную мечту многих математиков о доказательстве теоремы Ферма.
Естественно представить состояние Уайлса в то время. Даже поддержка и доброжелательное отношение коллег по цеху не могли компенсировать его состояние психологического опустошения.
И вот, всего через месяц, когда, как пишет Уайлс во введении к своей итоговой статье в «Annals» с окончательным доказательством, «я решил бросить последний взляд на эйлеровы системы в попытке реанимировать этот аргумент для доказательства», это случилось. Вспышка озарения настигла  Уайлса 19-го сентября 1994 г.  Именно в этот день пробел в доказательстве удалось закрыть.
Далее дела пошли в стремительном темпе. Уже налаженное сотрудничество с Ричардом Тейлором при изучении эйлеровых  систем Колывагина и Тэйна позволило окончательно оформить доказательство в виде двух больших статей уже в октябре .
Их публикация, занявшая на весь номер «Annals of Mathematics», последовала уже в ноябре 1994. Все это вызвало новый мощный информационный всплеск. История доказательства Уайлса получила в США  восторженную прессу, был снят фильм и выпущены книги об авторе фантастического прорыва в математике. В одной из оценок своего собственного труда Уайлс отметил, что он изобрел математику будущего.
(Интересно, так ли это? Заметим лишь, что со всем этим информационным шквалом резко контрастировал практически нулевой информационный резонанс в России, продолжающийся  до сих пор).
Зададимся вопросом – какова «внутренняя кухня» получения выдающихся результатов? Ведь интересно знать, как ученый организует свою работу, на что в ней ориентируется, как определяет приоритеты своей деятельности.  Что можно сказать в этом смысле про Эндрю Уайлса? И неожиданно оказывается, что в современную эпоху активных научных коммуникаций и коллективного стиля работы у Уайлса был свой взгляд на стиль работы над суперпроблемами.
Уайлс шел к своему фантастическому результату на основе интенсивной  непрерывной многолетней индивидуальной работы. Организация его деятельности, говоря казенным языком, носила  экстремально внеплановый характер. Это категорически нельзя было назвать деятельностью в рамках определенного гранта, по которой необходимо регулярно отчитываться и опять всякий раз планировать получение определенных результатов к определенному сроку.
Такая деятельность вне общества, не использующая непосредственное научное общение  с коллегами даже на конференциях, казалась противоречащей всем канонам работы современного ученого.
Но именно индивидуальная работа,  позволяла выходить за рамки уже сложившихся стандартных понятий и методов. Такой стиль работы, замкнутый по форме и одновременно свободный по сути,  позволял изобретать новые мощные методы иполучать результаты нового уровня.
Стоявшая перед Уайлсом проблема  (гипотеза Таниямы-Шимуры-Вейля) не находилась в те годы в числе даже ближайших вершин, которые могут быть покорены современной  математикой. При этом никто из специалистов не отрицал ее огромного значения, и номинально она была в «мэйнстриме» современной математики.
Таким образом, деятельность Уайлса носила ярко выраженный внесистемный характер и результат был достигнут благодаря сильнейшей мотивации, таланту, творческой свободе, воле, более чем благоприятным материальным условиям для работы в Принстоне и, что крайне важно, взаимопониманию в семье.
Доказательство Уайлса, появившееся как гром среди ясного неба, стало своеобразным тестом для международного математического сообщества. Реакция даже самой прогрессивной части этого сообщества в целом оказалась, как ни странно, довольно нейтральной. После того как улеглись эмоции и восторги первого времени после появления знакового доказательства все спокойно продолжили  свои дела. Специалисты по арифметической алгебраической геометрии потихоньку изучали «могучее доказательство» в своем узком кругу, остальные же бороздили свои математические тропы, расходясь, как и ранее, все дальше друг от друга.
Попробуем понять эту ситуацию, у которой есть как объективные, так и субъективные причины. Объективные факторы невосприятия, как ни странно, имеют корни в организационной структуре современной научной деятельности. Эта деятельность подобна катку, спускающемуся по наклонной вниз дороге и обладающему колоссальной инерцией: своя школа, свои сложившиеся приоритеты, свои источники финансирования, и.т.д. Все это хорошо с точки зрения налаженной системы отчетности перед грантодателем, но мешает поднять голову и оглядеться по сторонам: а что собственно действительно является важным и актуальным для науки и общества, а не для очередной порции гранта?
Потом - опять же - не хочется вылезать из своей уютной норки, где все так знакомо, и залезать в другую, совсем незнакомую нору. Неизвестно, чего там ждать. Тем более, заведомо ясно - за вторжение денег там не дают.
Вполне естественно, что ни одна из бюрократических структур, организующих науку в разных странах, включая и Россию, так и не сделала выводов не только из феномена доказательства Эндрю Уайлса, но и похожего феномена нашумевшего доказательства Григория Перельмана другой, тоже знаменитой математической проблемы.
Субъективные факторы нейтральности реакции математического мира на «событие тысячелетия» лежат во вполне прозаичных причинах. Доказательство действительно необычайно сложное и длинное. Для неспециалиста в арифметической алгебраической геометрии оно кажется состоящим из наслоения терминологии и конструкций наиболее абстрактных математических дисциплин. Кажется, что автор и вовсе не ставил цель, чтобы его поняли как можно большее число интересующихся математиков.
Эта методологическая сложность, к сожалению, присутствует как неизбежная издержка великих доказательств последнего времени ( например,  разбор недавнего доказательства Григория Перельмана гипотезы Пуанкаре продолжается по сей день).
Сложность восприятия усиливается еще и тем, что арифметическая алгебраическая геометрия - весьма экзотическая подобласть математики, вызывающая  трудности даже у профессиональных математиков. Дело усугублялось также и необычайной синтетичностью доказательства Уайлса,  использовавшего разнообразные современные инструменты, созданные большим числом математиков в самые последние годы.
Но надо учесть, что перед Уайлсом и не стояла методическая задача объяснения – он конструировал  новый метод. В методе работал именно синтез собственных гениальных идей Уайлса и  конгломерата новейших результатов из различных математических направлений. И именно такая мощная конструкция протаранила неприступную проблему. Доказательство не стало случайностью. Факт его кристаллизации полностью соответствовал как логике развития науки, так и логике познания. Задача разъяснения такого супердоказательства представляется абсолютно самостоятельной, весьма непростой, хотя и очень перспективной проблемой.
Можете сами прощупать общественное мнение. Попробуйте задать вопросы знакомым математикам по поводу доказательства Уайлса: кто понял? Кто понял хотя бы основные идеи? Кто захотел понять? Кто почувствовал, что это новая математика? Ответы на эти вопросы представляются риторическими. И вряд ли вы встретите много желающих прорвать частокол специальных терминов и освоить новые понятия и методы для того, чтобы решить всего одно весьма экзотическое уравнение. И почему ради именно этой задачи надо все это изучать?!
Приведу такой забавный пример. Пару лет назад знаменитый французский математик, филдсовский лауреат, Пьер Делинь, крупнейший специалист в  алгебраической геометрии и теории чисел, на вопрос автора  о смысле одного из ключевых объектов доказательства  Уайлса  – так называемого «кольца деформаций»  - после получасового раздумья сказал, что не до конца понимает смысл этого объекта.  С момента доказательства к этому моменту прошло уже десять лет.
Теперь можно воспроизвести  реакцию российских математиков. Основная реакция – ее практически полное отсутствие. В основном это вызвано «тяжелой»  и «непривычной» математикой Уайлса.
Например, в классической теории чисел вы не встретите таких длинных доказательств как у Уайлса. Как выражаются специалисты по теории чисел, «доказательство должно быть на страничку» (доказательство Уайлса в сотрудничестве с Тейлором в журнальном варианте занимает 120 страниц).
Также нельзя исключать фактора опасения за непрофессионализм своей оценки:  реагируя, берешь  на себя ответственность за оценки доказательства. А как это делать, когда не знаешь этой математики?
Характерной является позиция занятая непосредственными специалистами по теории чисел: «… и трепет, и жгучий интерес, и осторожность перед лицом одной из величайших загадок в истории математики» (из предисловия к книге Пауло Рибенбойма «Последняя теорема Ферма для любителей» - единственному  доступному на сегодняшний день источнику непосредственно по доказательству Уайлса для широкого читателя.
Реакция одного из самых известных современных российских математиков академика В.И. Арнольда на доказательство «активно скептична»: это не настоящая математика – настоящая математика геометрична и сильна связями с физикой. Более того, сама проблема Ферма по своей природе не может генерировать развитие математики, поскольку она «бинарна», то есть, формулировка проблемы требует дать ответ только на вопрос «да или нет». Вместе с тем, математические работы последних лет самого В.И. Арнольда во многом оказались посвящены вариациям на очень близкую теоретико-числовую тематику. Возможно, что Уайлс парадоксальным образом стал косвенной причиной этой активности.
На мехмате МГУ, все-таки, появляются энтузиасты доказательства . Замечательный математик и ученый-популяризатор  Ю.П. Соловьев (безвременно ушедший от нас) инициирует перевод книги Э.Кнэппа по эллиптическим кривым с необходимым материалом по гипотезе Таниямы–Шимуры-Вейля.  Алексей Панчишкин, работащий ныне во Франции, в 2001-м году  читает на мехмате лекции, положенные в основу соответствующей части его с Ю.И. Маниным великолепной, упомянутой выше  книги по современной теории чисел ( выходящей в русском переводе Сергея Горчинского с редактурой Алексея Паршина в 2007г.).
Несколько удивительно, что в московском математическом институте Стеклова – центре математического мира России - доказательство Уайлса не разбиралось на семинарах, а изучалось только отдельными профильными экспертами. Тем более, не разбиралось и доказательство уже полной гипотезы Таниямы-Шимуры-Вейля (Уайлс доказал только ее часть, достаточную для доказательства теоремы Ферма). Это доказательство было дано в 2000 году уже целым коллективом зарубежных математиков, включая Ричарда Тейлора – соавтора Уайлса по завершающему этапу доказательства теоремы Ферма.
Также не отмечалось и публичных высказываний и, тем более, дискуссий со стороны известных российских математиков по поводу доказательства Уайлса. Известна довольно резкая дискуссия между россиянином В. Арнольдом («скептиком метода доказательства») и  американцем С. Ленгом («энтузиастом метода доказательства»), однако, ее следы теряются в западных изданиях. В российской же центральной математической прессе за время, прошедшее со времени публикации доказательства Уайлса,  не было публикаций на тему доказательства. Пожалуй, единственной публикацией на эту тему был перевод статьи канадского математика Генри Дармона даже еще неокончательной версии доказательства в «Успехах математических наук» в 1995 году (забавно, что полное доказательство уже было опубликовано).
На этом «сонном» математическом фоне, несмотря на крайне абстрактный характер доказательства Уайлса, некоторые бесстрашные теоретические физики включили его в зону своего потенциального интереса и начали его изучение, надеясь рано или поздно найти приложения математики Уайлса. Это не может не радовать, хотя бы потому, что эта математика  все эти годы находилась практически в самоизоляции.
Тем не менее, проблема адаптации доказательства, крайне отягчающая его прикладной потенциал, оставалась и остается очень актуальной. На сегодняшний день оригинальный крайне специальный текст статьи Уайлса и  совместной статьи Уайлса и Тейлора  уже адаптирован, правда только для достаточно узкого круга профессиональных математиков. Это сделано в упоминавшейся книге Ю. Манина и А. Панчишкина. Им удалось успешно сгладить определенную искусственность оригинального доказательства. Кроме того,  американский математик Серж Ленг, яростный пропагандист доказательства Уайлса (к сожалению, ушедший от нас в сентябре 2005-го года),  включил некоторые наиболее важные конструкции доказательства в третье издание своего, ставшего классическим, университетского учебника  «Алгебра».
В качестве примера искусственности оригинального доказательства  отметим, что одной из особенно ярких черт, создающих такое впечатление, является  особая роль отдельных простых чисел, таких как 2, 3, 5, 11, 17, а также отдельных натуральных чисел, таких как 15,  30 и 60. Помимо прочего, совершенно очевидно, что доказательство не геометрично в самом обычном смысле. Оно не содержит естественных геометрических образов, к которым можно было бы привязаться для лучшего понимания текста. Сверхмощная «затерминологизированная» абстрактная алгебра и «продвинутая» теория чисел чисто психологически бьют  по возможности восприятию доказательства даже квалифицированного читателя-математика.
Остается только удивляться, почему же в такой ситуации эксперты доказательства, включая самого Уайлса, его «не шлифуют», не пропагандируют и не популяризируют явный «математический хит» даже в родном математическом сообществе. 
Итак, если говорить коротко, то на сегодняшний день факт доказательства Уайлса является просто фактом доказательства теоремы Ферма со статусом первого правильного доказательства и использованной в нем «некой сверхмощной математики».
По поводу мощной, но не нашедшей приложений математики очень ярко в свое время высказался известный российский математик середины прошлого века, бывший декан мехмата, В.В. Голубев: «… по остроумному замечанию Ф. Клейна, многие отделы математики представляют подобие тех выставок новейших моделей оружия, которые существуют при фирмах, изготовляющих вооружение; при всем остроумии, вложенном  изобретателями, часто бывает, что когда начинается настоящая война, эти новинки оказываются в силу тех или иных причин непригодными… Совершенно ту же картину представляет собой и современное преподавание математики; учащимся даются в руки весьма совершенные и мощные средства математического исследования…, но дальше учащиеся не выносят никакого представления о том, где и как эти мощные и остроумные методы могут быть приложены в решении основной задачи всей науки: в познании окружающего нас мира и в воздействии на него творческой воли человека. В свое время А.П. Чехов сказал, что если в первом действии пьесы на сцене висит ружье, то необходимо, чтобы хотя в третьем действии из него стреляли. Это замечание полностью приложимо и к преподаванию математики: если студентам излагается какая-нибудь теория, то необходимо показать рано или поздно, какие приложения можно сделать из этой теории прежде всего в области механики, физики или техники и в других областях.»
Продолжая эту аналогию можно сказать, что  доказательство Уайлса представляет исключительно благоприятный материал для изучения огромного пласта современной фундаментальной математики. Здесь студентам можно показать как задача классической теории чисел тесно связана с такими разделами чистой математики как современная алгебраическая теории чисел,  современная теория Галуа,  p-адическая математика, арифметическая алгебраическая геометрия,  коммутативная и некоммутативная алгебра.
Было бы справедливо, если бы уверенность Уайлса, что изобретенная им математика – математика нового уровня нашла свое  подтверждение. И очень не хочется, чтобы эту действительно очень красивую и синтетическую математику постигла участь «невыстрелившего ружья».
И все-таки, зададимся теперь вопросом: можно ли в достаточно доступных терминах описать доказательство Уайлса для широкой интересующейся аудитории?
С точки зрения специалистов это абсолютная утопия. Но давайте, все-таки, попробуем, руководствуясь простым соображением, что теорема Ферма – это утверждение всего лишь о целых точках нашего обычного трехмерного евклидова пространства.
Будем последовательно подставлять точки с целыми координатами в уравнение Ферма.
Уайлс находит оптимальный механизм пересчета целых точек и их тестирования на удовлетворение уравнению теоремы Ферма (после введения необходимых определений такой пересчет как раз и будет соответствовать так называемому «свойству модулярности эллиптических кривых над полем рациональных чисел», описываемому гипотезой Таниямы–Шимуры-Вейля»).
Механизм пересчета оптимизируется с помощью  замечательной находки немецкого математика Герхарда Фрея, связавшим потенциальное решение уравнения Ферма с произвольным показателем «n» с другим, совсем непохожим на него, уравнением. Это новое уравнение  задается  специальной кривой (названной эллиптической кривой Фрея). Эта кривая Фрея задается уравнением совсем несложного вида:
y2 + x (x - an) (x+ bn) = 0
Неожиданность идеи Фрея состояла в переходе от теоретико-числовой природы задачи к ее «скрытому» геометрическому аспекту. А именно: Фрей сопоставил всякому решению (a,b,c) уравнения Ферма, то есть  числам, удовлетворяющим соотношению
an + bn = cn
указанную выше кривую. Теперь оставалось показать, что таких кривых не существует при n>2. В этом случае отсюда  и следовала бы великая теорема Ферма. Именно такая стратегия и была выбрана Уайлсом в 1986-м году, когда он начал свой феерический штурм.
Изобретение Фрея к моменту «старта Уайлса» было совсем свежим (85-й год) и перекликалось также с относительно недавним подходом французского математика Хеллегуарша (70-е годы), предложившего использовать эллиптические кривые для поиска решений диофантовых уравнений,  т.е. уравнений похожих на уравнение Ферма.
Попробуем теперь посмотреть на кривую Фрея с другой точки зрения, а именно, как на инструмент пересчета целых точек в евклидовом пространстве. Другими словами, у нас кривая Фрея будет играть роль формулы, определяющей алгоритм такого пересчета.
В таком контексте можно сказать, что Уайлс изобретает инструменты (специальные алгебраичесие конструкции) для контроля за этим пересчетом. Собственно говоря, этот тонкий инструментарий  Уайлса и составляет центрально ядро и основную сложность доказательства. Именно при изготовлении этих инструментов и возникают основные изощренные алгебраические находки Уайлса, которые так непросты для восприятия.
Но все же, самым неожиданным эффектом доказательства, пожалуй, оказывается достаточность  использования только одной «фреевской» кривой, представляемой совсем несложной, почти «школьной» зависимостью y=f(x). Удивительно, что использование только одной такой кривой оказывается достаточным для тестирования всех точек трехмерного евклидова пространства с целыми координатами на предмет удовлетворения их соотношению Большой теоремы Ферма с произвольным показателем степени «n». 
Другими словами, использование всего одной кривой (правда, имеющей специфический вид), доступной для понимания и обычному старшекласснику, оказывается равносильным построению алгоритма (программы) последовательного пересчета целых точек обычного трехмерного пространства. И не просто пересчета, а пересчета с одновременным тестированием целой точки на «ее удовлетворямость» уравнению Ферма.
Именно здесь возникает фантом самого Пьера де Ферма, поскольку при таком пересчете оживает то, что обычно называется  «Ferma’t descent», или редукцией (или «методом бесконечного спуска») Ферма.
В этом контексте сразу же становится ясно почему сам Ферма не мог доказать свою теорему по объективным причинам, хотя при этом вполне мог «увидеть» геометрическую идею ее доказательства.
Дело в том, что пересчет  проходит по контролем математических инструментов, не имеющих аналогов не только в далеком прошлом, но и неизвестных до Уайлса даже в современной математике.
Самое главное здесь в том, что эти инструменты «минимальны», т.е. их нельзя упростить. Хотя сама по себе эта «минимальность» весьма непроста.  И именно осознание Уайлсом этой нетривиальной «минимальности» и стало решающим финальным шагом доказательства. Это как раз и была та самая «вспышка» 19-го сентября 1994 года.
Некоторая проблема, вызывающая неудовлетворенность, здесь все-таки остается – у Уайлса эта минимальная конструкция не описана явно. Поэтому у интересующихся проблемой Ферма еще есть интересная работа - необходима ясная интерпретация этой «минимальности». 
Возможно, что именно здесь и должна скрываться геометрия «заалгебраизированного» доказательства. Не исключено, что как раз эту геометрию и чувствовал сам Ферма, когда делал знаменитую запись на узких полях своего трактата: «я нашел поистине замечательное доказательство …».
Теперь непосредственно перейдем к  виртуальному эксперименту и попробуем «покопаться» в мыслях математика-юриста Пьера де Ферма.
Геометрический образ так называемой малой теоремы Ферма можно представить в виде окружности, катящейся «без проскальзывания» по прямой и «наматывающей» на себя целые точки.  Уравнение малой теоремы Ферма в этой интерпретации получает и физический смысл – смысл закона сохранения такого движения в одномерном дискретном времени.
Эти геометрические и физические образы можно попробовать перенести на ситуацию, когда размерность задачи (число переменных уравнения)  увеличивается и уравнение малой теоремы Ферма переходит в уравнение большой теоремы Ферма. А именно: допустим, что геометрия большой теоремы Ферма  представляется сферой, катящейся по плоскости и «наматывающей» на себя целые точки на этой плоскости. Важно, что это качение не должно быть произвольным, а «периодическим» (математики также говорят «циклотомическим»). Периодичность качения означает, что вектора линейной  и угловой скорости катящейся максимально общим образом сферы через определенное фиксированное время (период) повторяются по величине и по направлению. Такая периодичность  аналогична периодичности линейной скорости качения окружности по прямой, моделирующей  «малое»  уравнение Ферма.
Соответственно, «большое» уравнение Ферма получает смысл закона сохранения указанного выше движения сферы уже в двумерном дискретном времени.  Возьмем теперь диагональ  этого двумерного времени (именно в этом шаге и состоит вся сложность !). Эта чрезвычайно хитрая и оказывающаяся единственной диагональ и представляет собой уравнение большой теоремы Ферма, когда  показатель «n» уравнения равен именно двум.
Важно отметить, что в одномерной ситуации – ситуации малой теоремы Ферма - такой диагонали находить не надо, поскольку время одномерно и диагональ брать не отчего. Поэтому степень переменной в уравнении малой теоремы Ферма может быть произвольной.
Итак, довольно неожиданно, мы получаем мостик к «офизичиванию» большой теоремы Ферма, то есть, к  появлению у нее физического смысла. Как тут не вспомнить, что Ферма занимался не чужд был и физики.
Кстати, опыт физики также показывает, что законы сохранения механических систем приведенного выше вида квадратичны по физическим переменным задачи. И наконец, все это вполне согласуется с квадратичной структурой законов сохранения энергии ньютоновской механики, известных из школы. 
С точки зрения приведенной выше «физической» интерпретации большой теоремы Ферма свойству «минимальности» соответствует минимальность степени закона сохранения (это двойка). А редукции Ферма и Уайлса соответствует приведение законов сохранения пересчета точек к  закону простейшего вида. Этот простейший (минимальный по сложности) персчет как геометрически, так и алгебраически и представляется качением именно сферы по плоскости , поскольку сфера и плоскость – «минимальные» , как нам совершенно понятно, двумерные геометрические объекты.
Вся сложность, на первый взгляд отсутствующая, здесь состоит в том, что точное описание такого с виду «простого» движения сферы совсем непросто. Дело вом, что «периодическое» качение сферы «впитывает в себя» кучу так называемых «скрытых» симметрий нашего трехмерного пространства.  Эти скрытые симметрии обусловлены нетривиальными сочетаниями (композициями) линейного и углового движения сферы – см. рис.1.

Рис. 1.
Именно для точного описания этих скрытых симметрий, геометрически закодированных таким хитрым качением сферы (точки с целыми координатами «сидят» в узлах нарисованной решетки), и требуются  алгебраические конструкции Уайлса.
В приведенной на рис.1 геометрической интерпретации линейное движение центра сферы «считает» целые точки на плоскости, а ее угловое (или вращательное) движение обеспечивает пространственную (или вертикальную) компоненту пересчета. Вращательное движение сферы не сразу удается «разглядеть» в произвольном качении сферы по плоскости. Именно вращательное движение и соответствует упомянутым выше скрытым симметриям евклидова пространства.
Введенная выше кривая Фрея как раз и «кодирует» наиболее красивый с эстетической точки зрения пересчет целых точек в пространстве,  напоминающий движение по винтовой лестнице. Действительно, если следить за кривой, которую заметает некоторая точка сферы за один период, то обнаружится,  что наша отмеченная точка заметет кривую, изображенную на рис. 2, напоминающую «двойную пространственну синусоиду» - пространственный аналог графика . Эту красивую кривую можно интерпретировать как график «минимальной» по “n” (то есть n=2) кривой Фрея. Это и есть график нашего тестирующего пересчета.
Подключив некоторое ассоциативное восприятие этой картины, к своему удивлению мы обнаружим, что, поверхность, ограничиваемая нашей кривой, поразительным  образом похожа на поверхность молекулы ДНК  - «краеугольного  кирпича» биологии! Возможно, что неслучайно терминология ДНК-кодировки конструкций из доказательства Уайлса используется в книге Сингха «Великая теорема Ферма».
Еще раз подчеркнем, что решающим моментом нашей интерпретации оказывается то обстоятельство, что аналогом закона сохранения для малой теоремы Ферма (его степень  может быть сколь угодно большой) оказывается уравнение Большой теоремы Ферма именно в случае n=2.  Именно этот эффект  «минимальности степени закона сохранения качения сферы по плоскости» и соответствует утверждению Большой теоремы Ферма.

Рис. 2.
Вполне возможно, что сам Ферма видел или чувствовал эти геометрические и физические  образы, но при этом не мог предполагать, что их так сложно описать с математической точки зрения. Тем более, он не мог предполагать, что для описания такой, хотя и нетривиальной, но все-таки достаточно прозрачной геометрии, потребуется еще триста пятьдесят лет работы математического сообщества.
Теперь перекинем мостик к современной физике. Предложенный здесь геометрический образ доказательства Уайлса очень близок к геометрии современной физики, пытающейся подобраться к загадке природы гравитации  – квантовой общей теории относительности. Для подтверждения этого, с первого взгляда неожиданного, взаимодействия Большой теоремы Ферма и «Большой Физики», вообразим, что катящаяся сфера  массивна и «продавливает» плоскость под собой.   Интерпретация этого « продавливания» на рис. 3 поразительно напоминает хорошо известную геометрическую интерпретацию общей теории относительности Эйнштейна, описывающей как раз «геометрию гравитации».
А если учесть еще и присутствующую дискретизацию нашей картинки, воплощаемую дискретной целочисленной решеткой на плоскости, то мы и вовсе воочию наблюдаем «квантовую гравитацию»!

Рис. 3.
Вот на этой на этой мажорной «объединительной» физико-математической ноте и закончим нашу «кавалерийскую» попытку дать наглядное толкование «сверхабстрактного» доказательства Уайлса.
Теперь, пожалуй, следует подчеркнуть, что в любом случае, какое бы ни было правильное доказательство теоремы Ферма, оно обязательно должно их так или иначе использовать конструкции и логику доказательства Уайлса . Обойти все это просто невозможно по причине упомянутого «свойства минимальности» математических инструментов Уайлса, использованных для доказательства. В нашей «геометро-динамической» интерпретации этого доказательства это «свойство минимальности» обеспечивает «минимально необходимые условия» для корректного (т.е. «сходящегося») построения тестирующего алгоритма.
С одной стороны, это огромное огорчение для любителей-ферматистов (если, конечно, они про это узнают; как говорят, «меньше знаешь – лучше спишь»). С другой стороны, природная «неупрощаемость» доказательства Уайлса формально облегчает жизнь профессиональным математикам – они могут не читать периодически возникающие «элементарные» доказательства от любителей математики,  ссылаясь на отсутствие соответствия с доказательством Уайлса.
Общий же вывод состоит в том, что и тем и другим надо «напрягаться» и понимать это «изуверское» доказательство, постигая по-сути «всю математику».
Что же еще важно не упустить, подводя итоги всей этой уникальной истории, свидетелями которой мы стали? Сила доказательства Уайлса в том, что оно является не просто формально-логическим рассуждением, а представляет широкий и мощный метод. Это творение представляет собой  не отдельный инструмент для доказательства одного отдельно взятого результата, а прекрасный набор хорошо подобранных инструментов, позволяющий «раскалывать» самые разнообразные задачи. Принципиально важно и то, что посмотрев вниз с высоты небоскреба доказательства Уайлса, мы увидим и всю предшествующую математику. Пафос состоит в том, что это будет не «лоскутное», а панорамное видение. Все это говорит не только о научной, но и о методологической преемственности этого поистине магического доказательства. Осталось «всего-то ничего» - только его понять и научиться применять.
Интересно, чем сегодня занят наш герой-современник Уайлс?  Об Эндрю никаких особых новостей нет. Он, естественно, получил различные награды и премии, включая ту самую знаменитую обесценившуюся во время первой гражданской войны премию немца Вольфскеля. За все время, прошедшее с момента триумфа доказательства проблемы Ферма до сегодняшних дней, мне удалось заметить только одну, правда как всегда большую, статью в тех же “Annals” ( в соавторстве со Скиннером).  Может Эндрю опять затаился в преддверии нового математического рывка, например, так называемой “abc”-гипотезы – недавно сформулированной (Массером и Остерле в 1986 году) и считающейся самой главной проблемой теории чисел на сегодняшний день (это «проблема столетия» по выражению Сержа Ленга).
Гораздо больше информации о соавторе Уайлса по завершающей части доказательства – Ричарде Тейлоре. Он был одним из четырех авторов доказательства полной гипотезы Таниямы-Шмуры-Вейля и серьезно претендовал на филдсовскую медаль на математическом конгрессе в Китае в 2002 году. Однако, не получил ее (тогда ее получили всего два математика – русский математик из Принстона  Владимир Воеводский «за теорию мотивов» и француз Лоран Лафорг «за важную часть программы Ленглендса»). Тейлор опубликовал за это время немалое количество замечательных работ.  И вот недавно, Ричард добился нового большого успеха - доказал очень известную гипотезу – гипотезу Тейта-Саито, также относящуюся к арифметической алгебраической геометрии и обобщающую результаты немецкого. математика 19-го века Г. Фробениуса и российского математика 20-го века Н. Чеботарева.
Давайте напоследок немного пофантазируем. Возможно, настанет время, когда курсы математики в вузах, и даже в школах, будут подстроены под методы доказательства Уайлса.  Это означает, что Великая теорема Ферма станет не только модельной математической задачей, но и методологической моделью для преподавания математики. На ее примере можно будет изучать, по сути, все основные разделы математики.  Более того, будущая физика, а может быть даже биология и экономика, станут опираться именно на этот математический аппарат.   А вдруг?
Кажется, первые шаги в этом направлении уже сделаны. Об этом свидетельствует, например, то, что  американский математик Серж Ленг включил в третье издание своего классического  руководства по алгебре основные конструкции доказательства Уайлса. Еще дальше идут российские Юрий Манин и Алексей Панчишкин в упомянутом новом издании своей «Современной теории чисел», излагая детально само доказательство в контексте современной математики